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ON ESTIMATING THE PROBABILITY DISTRIBUTION

FUNCTIONS IN PERT-TYPE NETWORKS

Bajis Dodin
Graduate Program in Operations Research

North Carolina State University
P.O. Box 5511

Raleigh, NC 27650

ABSTRACT

This study deals with the problem of approximating the probability

distribution function of the project duration in probabilistic activity

networks. It describes a procedure that has been developed, programmed

and tested, using activity networks of real life projects as well as

randomly generated ones. The procedure allows the activity duration to

have any of the following distributions: Uniform, Triangular, Normal,

Exponential, Gamma, Beta or any discrete distribution presented in a

finite set of ordered pairs. The computational experience indicates that

the resultant probability distribution function (pdf) is very close to

the actual pdf, the latter is obtained through extensive Monte Carlo

sampling. In fact, computational experience shows that the pdf obtained

by Monte Carlo sampling converges to the approximate pdf as the sample

size increases. The procedure is programmed in FORTRAN and the CPU time

for any moderate size project (i.e., G(N,A ) G(60,200)) is less than

half a minute on AMDAHL V-7. C Z

:V-7



I. INTRODUCTION

One of the main difficulties in probabilistic activity networks

(PANs) is the determination of the probability distribution function

(pdf) of the project completion time. Approximating the probability

distribution function becomes very desirable if it can be easily per-

formed and if it results in an estimation close to the actual pdf.

Before introducing the proposed approximating procedure, which has

these two features, the following definitions and symbols will be used

throughout the discussions to follow:

G(N,A): An activity network with N nodes and A arcs. Nodes

represent events and arcs represent activities. Node i is

connected directly to node j, where i < j, by at most one arc.

JAI: Number of arcs in A.

i: Denotes a node, and is indexed from 1 to N.

a: Denotes an arc, and is indexed from 1 to JAI.

NS(a): Starting node of activity a.

NE(a): End node of activity a.

IN(i): Indegree of node i.

OUT(i): Outdegree of node i.

0 if the argument variable is "inactive"
6(-): For either node or arc = {

1 if the argument variable is "active"
where an "active" node or arc is one
that is retained in the final

L (irreducible) network.

PRE(i) ( (a I NE(a) - i and 6(a) - 11, the set of active arcs that

precede node i.

* : A convolution operator.

u: Minimum realization of an activity.
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v: Maximum realization of an activity.

X: First parameter for the Exponential, Gamma and Beta distri-

butions.

8: The second parameter for the Beta distribution.

m: Mode of a probability distribution function.

f(x): Density function of the random variable X, i.e., f(x) = dF(x).

IML: A list of nodes in the AN whose pdf's are desired, i.e.,

milestone or key nodes.L 0 if Monte Carlo sampling is not desired
MCS

1 otherwise

F(-): The Fast Fourier Transformation of the argument.

Px(x) = p(X=x), the probability mass of the random variable X and

in short is denoted by p(x).

NIN: Number of intervals in the sampled distributions (pdf's ob-

tained by Monte Carlo sampling).

A node, i, is realized at time T., which is a random variable whose

pdf is denoted by F(T), or simply F(i). On the other hand, an activity

is denoted by a, and has a duration X which is also a r.v. whose pdf is
a

denoted by F(x), or simply F(a). Furthermore, we denote CF(-) the count

of discrete values assumed by the r.v.. Hence, the pdf F(.) may be repre-

sented by a set of ordered pairs {(', P(rm))} for nodes and ((xm, p(x m

for arcs, m = 1,2,3,...,CF('). When we wish to refer to either arc or

node we write {(Rm, p(RM ) 1. Let NRR denote the desired number of ordered

pairs in the above set of ordered pairs.

The approximating procedure consists of the following five consecutive

steps:



1 - Generating Random Activity Networks (GRAN)

2 - Discretizing the Continuous Distributions (DISCRT)

3 - Reducing the Network to Its Irreducible Form (SCAN)

4 - Sequentially Approximating the Irreducible AN (APRXMT)

5 - Testing the Accuracy of the Approximate pdf (SIMULT) and (MAVGDV)

A brief discussion of the functions of each step is given below; however,

a detailed discussion is given in the subsequent sections. Flowchart 1

gives the outline of the approximating procedure (the driver program).

In the first step, if G(N,A) is not part of the input data, then it

is randomly generated from the space of all feasible AN's with the speci-

fied N and JAJ. In such a case GRAN (a random activity network generator)

is used and a rule for assigning a pdf to each arc has to be specified. An

activity can have one of the following six continuous distributions:

Uniform, Triangular, Normal, Exponential, Gamma, and Beta,

or any discrete distribution presented in a finite set of ordered pairs.

If any 4 c k has a continuous pdf, then DISCRT is used to approximate

such a distribution by a discrete one. Different discretization methods

are presented in Section III.

The first step in estimating the pdf of the project completion time

is to reduce the AN wherever possible. Two kinds of reductions can occur:

a. Convoluting two activities in series, which gives rise to a new

activity. This occurs if there is a node i with

IN(i) - OUT(i) - 1,

such a node will be deactivated after the convolution operation,

i.e., old 6(1) = 1 becomes new 6(1) - 0.
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b. Taking the maximum over two activities having the same starting

and ending nodes (in parallel).

An efficient search method for effecting such reduction is developed, it

is denoted by "SCAN". It reduces the AN to its irreducible form (IAN).

Details of SCAN are given in Section IV. The IAN can be used to determine

the unique activities; where an activity is "unique" if it is an element

of only one path.

If the irreducible network has more than one arc, then sequential

approximation, which is the subject of Section V, is used to determine

F(N) as well as the pdf of every active node in the IAN. In certain cases

other active nodes in the IAN, beside node N, are of interest to the ana-

lyst. The program "APRXMT" prints the pdf of each of these nodes in the

form of a table as well as a digital plot. Along with the pdf, 'he mean

and the standard deviation are also given. All such nodes are listed in

the input data under the symbol IML. If all the nodes of the AN are elements

of the set IML then the sequential approximation is applied to the AN without

the use of SCAN.

From this introduction we realize that the error in the approximation

occurs due to three causes:

I - Discretization: The error in approximating the continuous pdf by

a discrete one can be kept at any desired level by simply choosing the

proper spacing, A, in DISCRT.

* 2 - Independence of the Nodes: In the sequential approximation we

assume that the nodes are independent, where, in fact, some nodes may be

dependent. If the pdf of each arc in the AN is approximated by a normal

*distribution, and we are interested in characterizing the pdf of the project

completion time by its first four moments, then We can use the results
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developed by C. Clark [1]. However, in this report we are interested in

approximating the total pdf of the project completion time, not only

some of its moments, when the pdf of each activity may not be normal.

This is why we chose not to follow Clark's approach, though we recognize

its usefulness in the special circumstances to which it is applicable.

3 - Reducing the Dimension of F(i): In the sequential approximation

if CF(i) > NRR, then F(i) is approximated by F*(i) which has only NRR

ordered pairs. The error caused by this approximation can be controlled

by choosing large NRR. However, for practical purposes NRR can be chosen

to be between 20 and 30; otherwise, the program may run into storage

problems, especially if N and IAI are large. If NRR is not binding, then

all sets F(i) represent the exact pdf's if all arc pdf's were discrete

from the outset; otherwise, the error in F(i) is limited to what is caused

by the first two factors.

To be able to measure the error in approximating F(N), the actual

F(N) is obtained by extensive Monte Carlo sampling of the original AN

using the actual distribution functions. Then the maximum absolute devia-

tions and the average absolute deviations between the two distributions are

determined. Also, the actual average and standard deviation of the original

pdf are compared with the approximate mean and standard deviation. This is

done in Section VI through the use of SIMULT and MAVGDV.

The computational experience presented in Section Section VII indicates

that the approximate pdf is very close to that obtained by extensive MCS.

In fact, this experience shows that as the sample size in MCS increases the

above four measures approach the corresponding values obtained by the

approximating procedure.



The procedure has been programmed using FORTRAN IV. It is easy to

operate and can be used for any size network after making the necessary

storage adjustment. Appendix C describes the input requirements. The

program was tested for ANs of sizes (N,A) < (60,200). The CPU time in

all cases was less than thirty seconds on AMDAHL V-7 excluding the MCS

time. The program listing may be obtained from:

Graduate Program in Operations Research
N.C. State University

P.O. Box 5511
Raleigh, N.C. 27650

7I
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II. GENERATING RANDOM ACTIVITY NETWORKS

The activity network G(N,A) is either given a priori, which can be an

acyclic network of a real life project, or is specified by only N and IAI.

In the latter case it is desired to generate a feasible acyclic network

and to assign a pdf to each activity.

Any procedure used to generate G(N,A) must guarantee that such a net-

work has equal probability to be chosen from the set of all feasible AN's

with the specified number of N nodes and JAI arcs. Either of the following

two procedures, due to Herroelen [51, can be used to guarantee the complete

randomization of G(N,A).

1 - Deletion Method: It starts with a completely connected acyclic

network, i.e., the upper triangle of the adjacency matrix is filled with

ones. Hence we start the process with N(N-l)/2 arcs in hand, and it is

desired to delete

K = N(N-I)/2 - JAI

arcs subject to the constraints

i) The generated network is feasible, i.e.,

INi) > 1 for all i # 1

OUT(i) > 1 for all i # N

ii) The generated network is completely randomized, i.e., all net-

works possessing this count of N and JAI are equally probable.

The Deletion Method does just that. For the sake of completeness, the theory

is presented in Appendix A. The method proceeds as follows:
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a. Let OUT(i) - N - i for all i # N

IN(i) = i - 1 for all i # 1

and set L = 0

b. Generate a random number, denoted by rl, where r 1  U(0,1) then

let j = LN + 1/2 - (N(N-l)rl _+7l/4j (1)

c. If OUT(j) = 1 or IN(i) = 1 for all i > j go to b; otherwise con-

tinue.

d. Generate another random number, denoted by r2, where r2 - U(0,1)

and let k = J + 1 + r2(N-j

e. If IN(k) 1 go to d; otherwise arc a = (J,k) is deleted, i.e.,

6(a) = 0. Update IN(k) and OUT(j) and put L = L + 1.

f. If L < K go to b; otherwise a completely randomized G(N,A) is in

hand and the process stops.

2 - Addition Method: This is the reverse process; it starts with the

adjacency matrix filled with zeroes except for

6(1,2) = 6(N-1, N) = 1,

which guarantees one start and one terminal node. The Addition Method then

proceeds to generate the remaining JAI - 2 arcs subject to constraints (i)

and (ii) above. Unfortunately, the Addition Method as developed by

Herroelen [5] may generate more than JAI - 2 arcs; it may generate an extra

M arcs where 0 < M < N-3, especially if JAI < 2N-4. In Appendix A, where the

theory of the addition method is presented, we dwell more on this problem.

The Addition Method deals with two sets of arcs: the first set has the

"feasibility arcs" which range from (N-3) to (2N-6) arcs, and the second set

has the remainder of the arcs (if it is nonempty). The second set will be

denoted by "free arcs". The Addition Method generates as many as possible of
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the free arcs in a random fashion which (as shown in Appendix A) may increase

as more nodes become feasible. The procedure keeps track of the infeasible

nodes, i.e., nodes with zero indegree or zero outdegree (excluding, of course,

nodes 1 and N). If the number of free arcs is reduced to zero, then the

procedure generates the arcs necessary for feasibility; this step may cause

the generation of more than JAI arcs. This problem is solved by using the

Addition Method to delete the M extra arcs at random without violating the

feasibility of the AN. The Addition Method is summarized in Flowchart 2.

Obviously, either method can be used to generate G(N,A); however, if

the network is dense, then the Deletion Method may be preferred since less

arcs are to be deleted than added. The Deletion Method is used if

JAI > N(N-1)/4 ,

otherwise the Addition Method is used. Unfortunately, the Addition Method

is not as efficient as the Deletion Method, and, in fact, is harder to

program. Tests of both procedures for large N and JAI proved the validity

of the above rule. Both methods are used in the approximating procedure and

access to each method is possible by the automatic use of the above rule.

A



start

[Read N and JAl

Set: K = JAI, m =n = N -3

6()=0 for all a 1,K

6(l) =6(K) = 1 and L =2

Is Yes Locate a node j Generate a free arc a)

___with_______0_atrandom__andcheck______

Is nYese ofat no-eevn node ie. noeswt zer =indegrean

n: N b ro f no - m t ige n oda e s i no e., no e i t zp e mt e nr .

Is Ye Usethe ADition Method
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III. DISCRETIZING CONTINUOUS DISTRIBUTIONS

Determining or approximating the pdf of the project duration depends

on the pdf of each activity in G(N,A). For example, in Figure 1, the r.v.

Figure 1

An Irreducible Activity Network

T4 is a function of all the activities, as shown in Equation (2).

T4 = Max{X 1 + X4, X1 + X3 + X5, X2 + X5} (2)

Determining F(T) may not be a simple matter especially if some (or all)

of the activities have different continuous distributions. Other net-

works may be more complicated. The determination of F(T) is made easier

if activities 1 through 5 have discrete distributions; in such a case the

digital computer can be used to determine, or approximate, F(T)

The first step in the approximating procedure is to discretize all

the continuous distributions in the AN. This is done by determining a

set of ordered pairs denoting F(a). The cardinality of CF(a) depends on

the desired accuracy of the discretization. Using the closeness to the

exact values of the first five moments as a criterion to determine the count
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of points in the pdf F(a), denoted by CF(a); three methods have been pro-

posed and tried. The most efficient in terms of accuracy and computer

time is a hybrid of methods 2 and 3 described below. These three methods

are:

1 - The 2m Method: If we decide that CF(a) - m for any activity

with continuous distribution, then from the definition of F(a) we have

2m unknowns: m realizations and the corresponding m probabilities. The

first 2m moments of the continuous distribution can be used to construct

the following system of 2m nonlinear equations:

m

I xkp(x k) = en, for n = 0,l,2,...,2m-1
k=l

where

en  E (Xn )  xndF(x)dx, the nth moment.

In a matrix form we have:

VP - E

where V is the Vandermonde matrix of dimension 2mxm and P is the prob-

ability vector with m components, and E is the vector of the 2m moments.

Two methods have been tried to solve this system of nonlinear equations,

but unfortunately neither succeeded for m > 8. These methods are pre-

sented in Appendix B for completeness.

2 - Using Equal Distances: Based on the distribution of the activity,

the minimum and maximum realization values u and v can be determined; then

by the use of an appropriate spacing 6, depending on the desired accuracy,
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the range (v-u) can be subdivided into equal intervals. In this case

xk - u + A(k-l) V k = 1,2,3,... ,m where m -

As a rule in this study the minimum and maximum realizations are deter-

mined such that

p(X<u) = p(X>v) = 0.0005.

The corresponding probabilities are determined according to

Xk+A /2

p(xk) = f dF(x)dx for each k - 2,3,4,...,m-l,
xk-&/2

and p(x1) = p(u)- dF(x)dx and p(x) p(v) / dF(x)dx.

For a small A (large m) the determination of the probability can be

approximated by p(yk) - A f(yk) for each k = 1,2,...,m where yk is the

center of the kth interval, i.e., Yk = u + A(k-l) + A/2, and f(y) = dF(y).

This approach, as it appears in Figure 2, treats all points in the range

of the r.v. in a uniform fashion, i.e., we partition the range into equal

distances. This makes the discretization suitable for the use of the

Fast Fourier Transformation (FFT) method in the successive approximation

discussed in Section V. It is also very convenient for some distributions

such as the uniform, and the triangular distributions, and some other dis-

tributions when their skewness or peaks are not very acute. If sharp

peaks are present, such as the case in the exponential distribution with

large parameter -, or the normal distribution with small a, then very

small values of A are used to minimize the errors of approximation. This

drawback led to the use of the following alternative.
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3 - Using Equal Probabilities: Here, again, u and v are determined in

the same way as in Method 2. Then F(a) is determined according to:

A- p(xk) - 1/m for a given m,

and
1k

xk = F-( I p(x.) - A/2)
j=l 3

using the continuous distribution function. This scheme is suitable for

all distributions under consideration. However, it may not be easy (or

it can be time consuming) to invert some of the distribution functions.

Hence its use is limited to the exponential distribution, where it is

needed the most, while the method of equal distances is used for the re-

maining five distributions. Figures 2 and 3 illustrate methods 2 and 3

respectively for the exponential distribution with parameter = 1.

Figure 3 shows that Method 3 responds to the peak of the pdf by taking

more realizations, where Figure 2 shows that Method 2 does not respond

to peaks.

A

. n Ir~ .. ... . ... .. . ... .. . . iim . . .... ........ .... ........ Il mll ... .. . . . .. mil --
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IV. REDUCING THE NETWORK TO ITS IRREDUCIBLE FORM

In an AN it is always possible to combine two arcs in series to form

a new arc. Such an operation is accomplished through "convolution". Each

convolution operation reduces N and JAI each by one; actually the network

gains a new arc, but loses two arcs; this gain and loss are represented

by the node and arc indicators. For example, in Figure 4 arc ai (if' i2)

is convoluted with arc a2 = (i2 ' i3) to give arc a3 = (i i3)"

Figure 4

Convolution Operation

This operation introduces the following changes:

S(i2) = 0 and (al = 0

6(a3) =

63 12X 3 = X I * X2

and the pdf of a 3 is defined by the set F(a3) = {(y, p(y))}, where
y

Px (Y) " P(X3  Y y) - I PX (X)px (y-x).
3 x"'O 1 2
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If the nodes i1 and i3 in Figure 4 were originally connected with

an arc, say a4 .then the two arcs a 3 and a 4 can be "reduced" to one arc a5 9

with duration X 5  Now

X5 = Max{X 3 , X4 }

and the pdf of X5 is defined by the set F(a5) = {(z, p(z))},where

F5(z) - F3 (z)F 4 (z), and p5(z) = F5(z) - F5 (z) for a z slightly less

than z. Figure 5 illustrates this process. Such an operation is called

"maximum" operation.

3 =  .. * a 2

Figure 5

Convolution and Maximum Operations

The "maximum" operation reduces the AN by one arc; it sets

6(43) - 0

6(34) = 0

and "a5 ) - 1
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The reduction process starts with a convolution operation, then a

sequence of maximum and convolution operations may follow. The process

may start with any of the initial convolutions without fear of not reaching

the irreducible form of the AN. Both operations (convolution and maximum)

maintain the topological sorting of the AN.

The search for the convolution and maximum operations and the necessary

bookkeeping which goes with each operation is carried out by an algorithm

called "SCAN", which is based on the following two evident observations:

(i) For any node i, if IN(i) = OUT(i) = 1 then the arcs entering i

and emanating from i form a convolution operation.

In some projects node i can be considered a milestone event, i.e., i E IML,

and in such a case 6(i) = 1 throughout the approximating process and the

convolution operation may not be carried out.

(ii) For any two arcs a 0 a' if

NS(a) = NSW(')

and NE(a) = NE(a')

then a and a' form a maximum operation.

At the initial step of the reduction process there does not exist any maximum

operation since there is at most one arc connecting any two nodes i and j

directly, where i < j. The condition for the maximum operation develops

after the occurrence of at least one convolution operation; hence, we

initially check for a convolution operation using the first observation

and the following result which can be proved by induction:

Assertion 1: In any AN if IN(i) + OUT(i) > 2 for all nodes i 0 1 or N,

then the AN is irreducible.

Therefore, if IN(i) + OUT(i) > 2 for all i 0 1 or N, then the process moves

on to the sequential approximation. In this case the calculations are limited
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to only N-2 additions and comparisons. However, if there is a node i # 1

or N such that

IN(i) + OhT(i) = 2,

then a convolution operation is possible which, if carried out, might give

rise to maximum and convolution operations; then the search for both

operations becomes necessary. The search procedure based on observations

(M) and (ii) above is presented in Flowchart 3. This discussion leads to

the following result:

Assertion 2: For any node i # 1 or N in an irreducible activity network

IN(i) + OUT(i) > 3 .

SCAN waE programmed and tested using networks generated by GRAN as well

as networks of actual projects.

If the network is reducible then

SCAN: G(N,A) - G(N',A')

where

2 < N' < N

and

1 < IA'I < JAl

If N' = 2 then JA'j = I and the network is said to be "completely reducible".

Then the approximating procedure terminates with the pdf of T without resort
N

to the sequential approximation process presented in Section V. This is

the ideal situation where no approximation is made except in the discre-

tization stage. Such is the case n the AN of Figure 6 where pdf of TN

reached after 3 convolutions and 2 maximum operations.
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Figure 6

Completely Reducible AN

NONE
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Flowchart 3

An Algorithm for Determining the
Irreducible Network
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V. SEQUENTIAL APPROXIMATION OF IRREDUCIBLE ANS

The procedure to be described may be used for any AN with N > 2 and

IAI > 1, reducible or irreducible. However, as it is shown in Flowchart 1,

we encer this step of the approximating procedure only with irreducible

networks; such a network was the result of the SCAN operation, and is

denoted by G(N', A'). It is represented in the memory of the processor

by the active nodes and arcs, i.e., only nodes and arcs with 6's equal to 1.

This designation allows us to maintain the original structure of the AN.

Two of the active nodes are: the starting node, 1, where it has the

realization time 0 with probability 1, i.e., F(1) = {(0,1)}, and the

terminal node, N, representing the project completion event. The F(N)

is the one we are after. Starting at node 1 we proceed to approximate

the pdf of every active node, in increasing order, ending with node N.

The name "sequential approximation" is derived from this step. The pdf

of each active node is approximated by the following procedure, which is

illustrated in Flowchart 4.

Without loss of generality assume the process is at node i; node i

is active, hence

IN(i) > I or OUT(i) > 1, IN(i) + OUT(i) > 3, or iE IML,

see Figure 7 for illustration, then:
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ik ik

Figure 7

A Node in an Irreducible AN

1 - Determine the set of active arcs terminating in node i, i.e.,

PRE(i) = {a I 6(a) = 1 and NE(a) = i}.

2 - For each a E PRE(i)

(a) Convolute F(a) with F(NS(a)). Denote this convolution

by F(i a).

(b) If k - CF(ia) > NRR then use the operator:

APPR: F(i ) - F'(i a )

where CF'(i a) - NRR, i.e., approximate the k ordered pairs

by only NRR ordered pairs. This is done according to the

rules:

(i) The full range of the realization of the project end-

ing at node i is maintained.

(ii) The intermediate k-2 points are mapped into NRR-2 points

using the following three steps:
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(1) Let A (Rk-l - R2 )/(NRR-2), then we have NRR-2

intervals, each is of width A. The nth interval

must contain all realizations R E (R + A(n-1),

R1 + nAj.

(2) For the realizations in the nth interval let

x= Rm p(Rm) and Yn =P(Rm)
m m

then

(R', P(R')) = (x /y ).
n n n n Yn

th(3) If the n interval is empty, then

(R', P(R')) = (R + A(n-0.5), 0).
n n 1

3 - F(i) Max{F'(i )); notice that if APPR is not used then F'(.) = F(.).

This function is separable, hence, to avoid any unexpected escalation in the

storage requirements, the maximum can be performed sequentially, then the

operator APPR in step (b) above can be used whenever it is necessary.

For instance, we let

F(i1, i 2 ) = Max{F'(i 1), F'(i 2)}

then we determine Max{F'(i 3), F(i1, i2)} and so on. Hence the process ter-

minates with F(i) where CF(i) NRR. The process also determines the mean

and the standard deviation, and if i E IML, then F(i) is printed out in the

form of a table and digital plot. The process moves on to active node i'

immediately succeeding node i. If more than one node succeed node i, then

the process starts with the smallest numbered node.
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The maximum operation used in this step and in SCAN is performed in

the usual manner. Perhaps it is best explained by the example with the

data in Table 1.

1 2 3 (Max. of l&2)

X1  P(x1 ) x2  P(x2) x3  P(x3)

1 1/3 2 1/8 2 2/24

2 1/3 3 3/8 3 6/24

4 1/3 4 3/8 4 13/24

5 1/8 5 3/24

Table 1

pdf of Two Arcs or an Arc and a Node

F(3) - Max{F(1), F(2)}

= {(2, 1/24), (3, 3/24), (4, 3/24), (5, 1/24), (2, 1/24), (3, 3/24),

(4, 3/24), (5, 1/24), (4, 1/24), (4, 3/24), (4, 3/24), (5, 1/24))

= {(2, 2/24), (3, 6/24), (4, 13/24), (5, 3/24)1

2
The complexity of the maximum operation is of O(NRR)

The convolution operation can be performed by either the usual formula

or through the use of Fast Fourier Transformation (FFT). Testing both

methods for different AN's resulted in the preference of the usual formula

of convolution. This is due to the following factors:

i) FFT requires integer subscripts, since for a vector

c - (co, C1 ,...,cn I) E En

n-I
F(cj) - k-O ck exp(217jk/n), V J - 0,1,2,...,n-1 where i2 - -1.

I . ... .... .. ... .... ....... .....
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Hence, the realization of all activities has to be transferred into multiples

of the greatest co ion divisor; which is a burdensome requirement by itself

and.poses storage difficulties, compounded with matching increases in the

numbers of calculations. Therefore, before FFT is used to convolute

(c, p(c)) and (d, p(d)),

each of the vectors c and d has to be stretched over the range

(0,1,2, ..., 2K ) where K = og2 (cn 1 + dnl)] .

Then, the corresponding probabilities have to be assigned accordingly. The

example given below illustrates such a preparatory step.

(ii) The use of FFT to convolute c and d above, after being prepared,

proceeds as follows:

(a) Determine F(p(c)) and F(p(d)) using the definition of

F(.) in (i) above.

(b) Let F(p(e)) be the pairwise product of F(p(c)) and F(p(d)).

(c) Invert using F- (F(p(e)).

Obviously, the three steps involve many transformations and the complexity of

the procedure, at best, is of the 0(2 K ln2) = 0(n log n), since we defined

K= log 2n , see [7].

(iii) After p(e) is obtained, a reduction transformation may be necessary

since the set {(ei, p(ei))} is of length 2 and many of the probabili-

ties p(e) 0, especially at the start and end tails of the set.

Also, a common factor may be subtracted from the realizations ei

so that they may start at zero, i.e., use a shifting operator.

The following example, which uses the data of X1 and X2 in Table 1, illus-

trates the us(. of both methods; usual convolution (definitional form)
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and the preparatory step of FFT. Step (ii) above was processed on the

computer and resulted in a pdf close to the exact pdf presented in Table

2. The deviation is due to the truncations and transformations used in

the FFT procedure (step (ii) above).

Using the definition of the c, nvolution operator to X and X2 of

Table 1 gives

Y = X 1 X 2 where

p (y) = p (z)px (y-z)
z=0 '1 2

This operation is summarized in Table 2 below

y P(Y) P(Y)

3 1/24 1/24 = .0417

4 3/24 + 1/24 5/24 = .2083

5 3/24 + 3/24 11/24 = .4583

6 1/24 + 3/24 + 1/24 16/24 = .6667

7 1/24 + 3/24 20/24 = .8333

8 3/24 23/24 = .9583

9 1/24 24/24 = 1.000

Table 2

The Convolution of X1 and X2 of Table 1

To apply FFT, the vctors X and X have to have the common index
1 2

n -(0,1,2,.. .,16), notice tliat

16 = 2~ 4- where K +
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and the probability vectors are assigned accordingly. Therefore:

n= 0 1 2 3 4 5 6 7 8 9 10 11 ... 16

P(Xl) 0 1/3 1/3 0 1/3 0 0 0 0 0 0 0 ... 0

P(X2 0 0 1/8 3/8 3/8 1/8 0 0 0 0 0 0 ... 0

P(Xl)= 0 0 0 .0416 .1665 .2497 .2081 .1665 .1249 .0416 0 0 ... 0

Table 3

Convolution Using FFT Method

The value of n can be reduced to 8 by subtracting

Min{Y} = Min{X1 } + Min{X2}

= 1+2 3

Hence Table 3 can be transferred to Table 4 after dropping all entries

with zero probabilities at each end of the Table.

n't  0 1 2 3 4 5 6 7 n = n' + 3

P(xj) 1/3 1/3 0 1/3 0 0 0 0 xI1 1
P(x ) 1/8 3/8 3/8 1/8 0 0 0 0 x = x' + 2

2 2
P(x') .0416 .1665 .2497 .2081 .1665 .1249 .0416 0 x = x' + 3

1 1

Table 4

Thv. Reduction of Table 3

IU
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VI. TESTING THE ACCURACY OF THE APPROXIMATE PDF

The accuracy of the approximate pdf of the project duraticn, repre-

sented by F(N) can be measured by its closeness to the "true" pdf, de-

noted by F'(N). Such "closeness" is measured either by the maximum value

of the absolute deviation of F(N) from F'(N), denoted by MDV, or the

average value of the absolute deviations, denoted by ADV.

This Section deals with the problem of determining such maximum

and average deviations. It first deals with determining F'(N). This

is the subject of the first subsection, where Monte Carlo sampling is

used, since obtaining F'(N) analytically is not feasible in the majority

of cases. Then, in subsection 2, linear interpolation is used to

determine the maximum and average absolute deviations (MDV and ADV).

This segment of the Approximating Procedure is used only as an evalua-

tion tool. Access to this test is possible by setting the parameter MCS = 1

in the input data. Sampling consumes a lot of CPU time, hence in dealing

with large AN's, allocation of time should be considered before setting

MCS = 1. The following is a discussion of the sampling model called

"SIMULT".

1 - Sampling the Activity Network: Monte Carlo sampling of the AN

is performed using subroutine SIMULT. It assigns a random number to each

arc of the original network, G(N,A), generated from the original pdf of

the activity, continuous or discrete. Then SIMULT determines the comple-

tion time of the project using the longest path method; this also results

l the realization times of all nodes in the AN. These two steps are
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repeated for a "satisfactory" number of times. Here the number of samples

should be "large" to guarantee that F' (N) is very close to the "true"

pdf of the project duration time. For example, Table 5 shows for G(10,15)

the improvement in MDV and ADV as the number of samples increases.

Hence extensive Monte Carlo sampling is necessary; otherwise the values

of MDV and ADV may have to be adjusted to reflect the error in the sampled

distribution F'(N). The trend of improvement in the values of MDV and ADV

in Table 5 indicates that F(N) may be closer to the "true" pdf than these two

measures indicate.

D Comparison of the Approximate pdf with that of MCS.

roblem ists. No. of Average S. Deviation
Type MCSs APRX. MCS APRX. MCS MDV ADV

1 All 100 28.46 27.74 3.808 4.434 0.0556 0.0174

2 All 300 28.46 27.83 3.808 3.772 0.0568 0.0158

3 All 500 28.46 27.80 3.808 3.690 0.0584 0.0159

4 All 750 28.46 28.00 3-808 39041 0.0338 0.0091

5 All 1000 28.46 28.04 3.808 4.005 0.0274 0.0072

Table 5

Effects of Number of Samples

on the Measures of Performance

The gathered information through sampling is tabulated for each of

the critical nodes (elements of IML) or only for node N. Each table has

three columns; these are: completion times R., corresponding probabili-1

ties p(Ri ) and the accumulative probabilities P(Ri). The first two

columns represent the ordered pairs of the pdf F(N). Table 6 was gene-

rated using SIMULT,while Table 7 is the corresponding table using the

approximating procedure for the same ANwhich is u(1O,15) with all the

pdf's under consideration are used.
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The SIMULT subroutine has the potential of simulating any AN provided

that each of its arcs has one of the following distributions:

1 - Uniform

2 - Triangular

3 - Normal

4 - Exponential

5 - Gamma

6 - Beta

7 - Discrete distributions or customer specified distributions, where

these two cases are represented by a set of finite ordered pairs.

Each of the distributions is identified to SIMULT by its number in the

above listing, denoted by I. Hence I = 1 if the activity has a uniform

distribution, and I = 2 if the distribution is triangular, and so on.

The distribution identity I associated with activity a is denoted by

the symbol NDST(a). Each distribution is characterized by the following

four parameters - (where the use of each parameter is explained in the

discussion of each distribution):

EX(I): a real value representing the mean in some distributions,

and in some others it is used to input other parameters

(such as the first parameter for Gamma and Beta).

STDX(I): real value representing the standard deviation in some dis-

tributions and another parameter in some other distributions.

V4IN(I): minimum value of the random variable Xas determined by the

criterion used in DISCRT.

VMAX(1): as VMIN(1) except it represents the maximum of X
a
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The "true" distribution function represented by the Monte Carlo sampling
for the original network.

J REALIZATION PROSA8ILITY ACC. PROB.
1 15e9925 .IO0000-02 .10000E-02
2 16e9665 .3CO000F-2 .4COOOOF-02
3 18e0322 .300000E-02 *703000E-02

18.8939 *300000F-02 .99q999E-02
5 19.5900 *999999E-02 e200000E-016 20e5030 .153000E-01 .35000OE-01

7 21.3058 *220000F-01 *569999F-01
8 22,2076 .2803OOE-01 .e49999E-O1
9 22.9867 .399999E-01 .125000

10 23.9390 ,559999E-01 .181000
11 24.8600 .559999E-01 .237000
12 25.6529 .7g9996F-01 e316999
13 26.5022 .849996E-01 .401999
14 27*4174 *8tI9996F-0 1 °4E3SqJ8

15 28e1880 .799996E-01 .563998
16 29,1118 9819996E-01 .E459S8
17 29e9693 o789996E-0I *724997
18 30.8674 .699998E-01 * 794997
19 31.6662 0599999E-01 *54S 9 7
20 32.45P4 *319999F-01 .816S97
21 33.4634 *349999E-31 .921SS7
22 .4.2368 .263000F-01 .447997
23 35.0414 *220000E-01 .969997
24 36.1395 *.9q9gE-2 .9C7996
25 36.9213 *799999E-02 *1979ge
26 37.7353 .599999F-02 *593996
27 38.2952 .200000E-32 .R5S96
28 39.4778 .0 .;5996
29 40.7200 o333000E-02 .OS8996
30 42.8619 *00300F-02 .999996

The average duration of the project = 28.04 and its S.D. = 4.005

Table 6

F(10) Generated by SIMULT

L
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J RFALIZATION PROBABILITY ACC* PROB.
I 8.75000 .139970E-16 .139970E-16
2 9.78504 .954873F-17 .235457F-16
3 10.6420 .359588E-1I .359590E-11
4 12.6604 *34t903E-07 .341939E-07
5 14.0789 *124399E-05 o127818E-05
6 15.1314 .#I0340E-04 .123122E-04
7 16.4698 *140472F-03 .152785F-03
8 17.5058 *102961E-05 *153814E-03
9 18.2941 *215756E-02 .231137E-02

10 20.4425 *196f:33F-01 .219747E-01
11 21.1891 .0 .219747E-01
12 21.9082 o284878E-01 *5C4625F-01
13 23.1433 &539027E-01 .1043E'5
14 24.4398 *932945E-01 .197660
15 25.7719 .115094 .313554
16 27.3051 .118442 .431995
17 28o4196 .155535 .5E7530
18 29.8350 ,118626 .706156
1< 31•13,4 .933400E-01 .799496
20 32.3999 .800499 -01 .879546
21 33.7556 *555444E-01 .935090
22 35.0372 .313673E-01 o66458
23 36.2193 .185161E-01 *eq4974
24 37.4626 *779667E-02 .992770
25 38.7723 .573234F-02 .*98503
26 40.2990 .108035E-02 .9S9583
27 41,6743 *365955E-03 .9S9949
28 43.0373 .214648E-04 .9qS970
29 44.5454 .722603F-05 .099978
30 47e2530 9177579E-07 .999S78

The average duration of the project = 28.46 and its S.D. = 3.808

Table 7

F(IO) Generated by APRXMT

4i
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To obtain a random value x corresponding to the random variable X with

a given distribution F(x), we obtain a random number y - U(O,1) then

solve for x using the equation

Fx) = F(X < x) = y.
x

Hence

x = F (y).

This logic is used in the subroutines developed by International Mathemati-

cal and Statistical Libraries, Inc. (IMSL) [6]. However, in most cases

IMSL generates the random number for the standard distribution, such as

the case for standard normal, Beta,..... Let r represent the r.n. obtained

by IMSL subroutines. The necessary transformation is made to give us the

desired r.v. x. Table 8 has a listing of the distributions and the necessary

input data represented by the first five columns of the table. Also Table 8

illustrates the use of the above four parameters. The following is a brief

description of each distribution:

1 - Uniform Distribution:

if u < x <v

f(x) =
0 otherwise

r: is uniformly distributed between 0 and 1.

x = u + r(v-u)

= (u+v)/2

a 2 = (v-u) 2/12

-|/1
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2 - Triangular Distribution: Let k I = (v-u)(m-u)

and k2 = (v-u)(v-m)

2(x-u)/k 1  if u < x < m

f(x) = 2(v-x)/k 2  if m < x < v

otherwise

r: is between 0 and 1, and has a uniform distri-

bution

u + rk if 0 < r < y where 0-u1 - ~ wher 0<~ v-u

x -- 

- V~

v - (--r)k 2  if y < r <1

(u+m+v)/3

2
a [u(u-m) + v(v-u) + m(m-u)]/18

3 - Normal Distribution:

f(x) = 1 e-(x-) 2 /2c 2  for -< x <

and a > 0

r: is a random number from a standard normal distribution

x = p + or

4 - Exponential Distribution:

- xp(- x/tx) for x> 0 and t > 0

f(x) =

0 otherwise

i I. I I I 6II .... I'I
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r: is a random number from an exponential distribution

with mean a > 0.

x= r

2 2

5 - Gamma Distribution:

1 x e if x > 0 and a,a > 0
rastx

f(x)=

0 otherwise

1 c-Il-r

r: is a random number having the density f(r) = r e

for r > 0

x = r=

VI = L

2 = 62

6 - Beta Distribution:

_______________CA-c C(0a+) (x-a) (b-x) for u < x < vPFF3 (b-a) c + -

f(x) - and a,8 > 0

0 otherwise

r: random number having the density f(r) = (r)-1 (1-r) - I

0 < r < 1

x - u + r(v-u)

I - u + -a- (v-u)
2 2 ciB( (v-u) 2( -
2 . (v-u)2 2 t
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7 - Discrete Distributions: This category includes all discrete dis-

tributions and any customer oriented distribution. Its input consists of

a finite set of ordered pairs, {(Rm , p(Rm))}. To generate a random number

from any of these distributions, a random number r - U(0,1) is generated,

then the desired random realization is given by

x = P- (r).

Index IMSL
Distribution I EX(I) STDX(I) VMIN(I) VMAX(I) Subroutine

Uniform 1 0.00 0.00 u v GGUBS

Triangular 2 m 0.00 u v GGUBS

Normal* 3 a a u v GGNML

Exponential* 4 a 0.00 u v GGEXN

Gamma* 5 a B u v GGAMR

Beta 6 a B u v GGBTR

Discrete 7 not applicable GGUBS

Table 8

Input Parameters for SIMULT

.......... - o...al, Exponent-ial- and- Gamm---d-str-ibut-ions,- marked by * in

Table 8, a random v;lue is accepted only if it is in the interval [u,v];

otherwise, it is rejected and a new random value is generated.

2 - Comparing the Approximate pdf with the "true" pdf: The "true"

pdf of the project completion time is represented by the pdf obtained from

the extensive Monte Carlo sampling denoted by F'(N); the cardinality of
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F'(N) is NIN. This distribution is compared with the approximate pdf,

denoted by F(N) which has NRR realizations. The objective of the com-

parison is to determine the maximum absolute deviation (MDV), the average

value of the absolute deviations (AnV) between the two distributions, and

the mean and the standard deviation of each distribution. The deviations

are computed using linear interpolation. Figure 10 illustrates the con-

cept of linear interpolation where the points generating the solid line

represent the approximate pdf, F(N), and the scattered points in the

plane (R, P(R)) represent the "true" pdf, F'(N).

P(R)

0.0 -

.75- 
t

P(RjLnrIeoai

P(Rj .25-

RR1  R j Rj+I P' N R R

~Figure 10

i Linear Interpolation
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If the number of realizations in F' (N) is n = NIN, then we have n devia-

tions. Let

Dk: be the kth deviation where k = 1,2,...,n.

Hence,

MDV Max{Dki}
k

and,

ADV I DkJ/n.
k=l

In the approximate pdf the minimum and maximum realization times of

the project are always preservedl they are represented by R1 and RNRR

respectively. Hence

R1 > R,

and R' <R "

Therefore, for any ' of the true realizations, k = 1,2,...,n, there

exists an approximate realization R where j < NRR such that

jl

Using this relation we can obtain the equation of the line segment con-

necting the two points (Rj, P(Rj)) and (R.+, P(R If such a line
j+1j j~l

is denoted by

y = rx + s

where x is the realization axis and y is the probability axis, then the

slope of the line is

r = (P(R+) - P(R ))/(R - R )
j+l t j+l i

and the intercept is 1
s - P(R )-rR
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Hence, if R.' is given,then using the line equation we calculate the

corresponding approximate probability P(R') where

P(R~ y =rR + s,

then

D= - P'(R)"

See Figure 10 for illustration.

The linear interpolation is carried out for all realizations except

for those which lie in the 0.01 left and right tails of the sampled dis-

tribution. The exclusion of the two tails does not alter the values of

MDV and may alter ADV only slightly, and speeds up the interpolation since

many realizations with negligible probabilities might lie in the tails.

For example, the application of the linear interpolation to Tables 6 and

7 led to the exclusion of the first four and last five realizations of

Table 6. Table 8 has the complete output of the linear interpolation; the

third column in the table headed by "APRXMTD PROB." represents P(R) and

the last column represents Dk. Figure 11 is a digital plot of the first

three columns of Table 8. The symbol (.) represents the sampled distribution

where (-) represents the approximate distribution and (x) is used whenever

) and (-) are to b printed in the same location in the xy-plane.
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I REALIZATION SAMPLED PROR,, APRXMTF) PROB. ACTUAL DIFFERENCE1 19.6 o20000E-01 *14173E-01 -95e274E-02
2 23.5 .35000F-31 .23151E-C1 -*11849E-01
3 2103 .57000E-31 *38755E-0L -. 18245E-01
4 22.2 e8500CE-Ol .6)3531[3i-01 -. 21469E-01
5 23.0 *12500 *97532E-01 -*27468E-01
6 23.9 .18100 .16163 -o19373E-01
7 24.9 *23700 *23422 -o27838E-a2
8 25.7 .31700 .30321 -*13793E-01
9 26.5 e40200 .38369 -*18304E-0113 27.4 .46400 *47733 -. 66729E-02

It 28.2 o56400 .56206 -*19395E-02
12 29.1 .64600 *64554 -45729E-03
13 30.0 *72500 .71579 -. 92102E-02
14 30eq .79;500 .78020 -914793F-O1
15 31.7 .85500 *83306 -. 21939E-01
16 32.5 *118700 .88194 -. 50564E-02
17 33.5 .92200 .92312 .11195E-02
18 34o2 o94800 o946R7 -o11306E-02
19 35.0 0,;7000 *96652 -o34733E-02
20 36.1 .q003 .q8372 .37264E-02
21 3699 .98800 .98938 *13794E-02

The Average of the Absolute Values of the Deviations = .70003E-02
The Maximum of the Absolute Values of the Deviations = .27468E-01.lt is No. 5
Number of Positive Deviates = 3
Number of Negative Deviates = 18

Table 8

Comparison of the Sampled and the Approximate

Probability Distribution Functions
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VII. COMPUTATIONAL EXPERIENCE AND CONCLUSIONS

It is very difficult to judge the accuracy of the approximate pdf of

the project completion time since the exact pdf is not known, (it may be

known for small ANs), and the literature does not report other approximat-

ing procedures beside the various forms of MCS. Therefore, as it was clear

from the previous section, we had to compare the approximate pdf with that

obtained by MCS using the following four measures of performance:-

1 - Average value of the distribution

2 - Standard deviation

3 - The maximum of the absolute values of the deviations (MDV)

4 - The average of the absolute values of the deviations (ADV).

The variations in the measures of performance depend on the structure and

size of the AN, the distributions of the activity times, the sample size

in MCS, the accuracy of the discretization, and the values of NRR and NIN.

In this section we discuss the impact of these factors on the measures of

performance (MOP) and conclude the section with some conclusions concern-

ing the approximating procedure.

Table 9 shows how the distribution type affects the MDP for a randomly

generated AN with N = 10 and !A = 15 where the sample size is set equal to

1000. The parameters of the distributions used are given in Table 10. In

each of the eight problems considered in Table 9, the approximate average

value of the project completion time is within 1% of the sampled average.

The approximate average is slightly higher than the sampled average, while

the approximate standard deviation is less than the sampled stan ard devia-

tion. The graph of the density functions of each problem has the form

l4
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Comparison of the Approximate PDF with that of MCS

Distr.
Problem Average S. Deviation

Type* MDV ADV

APRX. MCS APRX. MCS

1 1 27.27 27.20 4.868 5.316 0.0426 0.0115

2 2 29.13 29.21 3.925 4.255 0.0513 0.0180

3 3 40.29 40.29 4.059 4.180 0.0585 0.0206

4 4 12.50 12.49 3.511 3.899 0.0328 0.00992

5 5 16.85 16.61 3.504 3.401 0.0436 0.0122

6 6 36.96 37.16 3.879 4.194 0.0772 0.0275

7 7 18.50 18.51 2.055 2.076 0.0083 0.0016

8 All 28.46 28.07 3.808 4.005 0.0274 0.0070

*For the specification of each distribution see Table 10 below.

Table 9

Sensitivity of the Approximation

Procedure to the PDF's

Order Dist. Type EX STDX VMIN VMAX

1 Uniform 5.0 - 0.00 10.00

2 Triangular 5.0 - 1.00 11.00

3 Normal 8.0 2.0 2.00 14.00

4 Exponential 2.0 2.0 0.00 15.00

5 Gamma 3.0 1.0 0.00 10.00

6 Beta 3.0 2.0 1.00 11.00

Discrete {(2.0,0.20),(3.0,0.30),(4.0,0.30),(5.0,0.20) I

Table 10

Probability Distribution Functions

Used in the Analysis
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shown in Figure 12. The sampled graph converges to the approximate graph

as the sample size increases; Table 5 of Section VI gives an example of

such convergence. The values of MDV and ADV vary with the time distribu-

tions adopted; but in the eight problems of Table 9 MDV is always less than

0.08 and ADV is less than 0.03. The smallest values for MDV and ADV are

obtained in problem 7 where a discrete distribution was used, the second

smallest values of MDV and ADV were obtained in problem 8 where some of

the activities in problem 8 have discrete distribution. This is expected

since the errors of discretization in problem 7 do not exist and in problem

8 they are less than in the remaining problems. The accuracy of the approx-

imation can be enhanced by having more accurate discretization; this was

the case in problem 4 where the exponential distribution was approximated

by thirty points, while each of the other continuous distributions was

approximated by only twenty points.

In Table 11 the uniform distribution and a sample of size 1000 are used

to examine the effects of the AN size on the MOP. Both the MDV and ADV

increase as the AN size increases; perhaps such an increase is due to retaining

the sample size constant since large ANs require larger sample sizes. The graphs

of the distributions of the problems in Tables 9 and 11 have the general form

of Figures 12 and 13; which agree with the general forms obtained by Van

Slyke [8] in sampling different PERT networks. The measure of MDV, in most

* of the problems considered, has its value from within the values of the

first 30% of the distribution. The parameter Dk used in Section VI.2

where

= P(R) - P'(R)
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Density

Approximate Distribution

/ ---- Sampled Distribution

-3o -2o -o P +a +2o +3o Completion Time

Figure 12

General Forms of the Probability Density Functions

of the Project Completion Time

Comparison of the Approximated PDF with that of MCS
ProlemNodes Arcs

(N) (A) Average S. Deviation
' DV ADV

APRX. MCS APRX. MCS

1 10 15 27.27 27.20 4.868 5.316 0.0426 0.0115

2 20 40 47.37 46.47 6.733 7.625 0.0557 0.0162

3 30 50 52.30 51.89 6.251 7.139 0.0525 0.0169

4 40 60 58.98 57.71 6.962 8.174 0.0633 0.01816

5 40 80 56.06 55.14 5.952 6.553 0.0303 0.01147

6 50 75 62.54 62.58 7.698 8.224 0.0651 0.0259

150 00 67.38 65.56 6.182 7.752 0.0880 0.0263

8 60 150 82.82 80.05 7.155 9.074 0.1082 0.0306

Table 11

Computational Experience for Different

Size AN's with Uniform Distribution
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General Form of the Sampled and
the Approximate Distributions
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Completion Time

Figure 14

The Beha-viol- of tLh Deviation D k
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tends to have negative values in the first half of the distribution and

positive values in the second half. As the errors in the discretization

decrease and the sample size in MCS increases the curve of Dk, having the

general form of Figure 14, converges toward the abscissa.

The CPU time requirements of the approximating procedure excluding the

MCS time are minimal. It is always less than half a minute for an AN of

size (N,A) < (60,200) with Uniform distribution on AMDAHL V-7. The CPU

time requirements for MCS with a fixed sample size depend on the size of

the AN and on the type of pdf's used. For a sample of size 1000 for the

problem G(60,150) with a Uniform distribution the CPU time was about two

minutes; the CPU time may double or triple if other distributions, such

as the Normal or Beta, are used.

From the preceeding discussion we conclude the following:-

1 - The approximation is at its best if the activities have discrete

distributions to start with. The accuracy of the approximation can be

improved by reducing the errors of discretization.

2 - The distribution of the project completion time approaches normality

regardless of the type of the distributions used at the outset. This was

the case in all the problems tested. The approximated mean and standard

deviatiun of the distribution are very close to the "true" mean and

standard deviation. In fact it is bounded from below by the best known

estimate, which is developed by Elmaghraby [2], and bounded from above by

the true mean.

3 - In comparison with the pdf obtained by MCS, the sampled distribution

converges toward the approximate pdf as the sample size increases.
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4 - The maximum value of the absolute deviation, MDV, is within the

first 30% of the distribution; this observation increases the applicability

of the approximate pdf since the realizations of the major interest are

those on the right half or tail of the pdf.

5 - The processing time requirements of the approximating procedure

excluding the sampling time are minimal. It is always less than half a

minute for any AN of size (N,A) < (60,200) on AMDAHL V-7.
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APPENDIX A

RANDOM NETWORK GENERATOR

The nodes in G(N,A) are numbered such that an arc always leads from

a small number to a larger one, and there is only one start and one end

node to the AN. An immediate consequence of such a numbering scheme is

that the adjacency matrix is always upper triangular with zero diagonal.

A typical AN and adjacency matrix is given in Figure A.1 below for N 4

and AI = 5.

3

1 2 3 4

1 0 1 1 0

2 0 1 1
[aij] 3 0 1

4 0

T~il lt- A.1

An A Livitv Network and

Its Adjacency Matrix
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Another consequence is that for a given N and JAI several feasible

G(N,A) may be generated. Figure A.2 lists the other (three) alternative

AN types for N 4 and JAI = 5

22 4

Figure A.2

The Remaining Feasible ANs with N = 4, AI = 5

Consequently, the random generation of a G(N,A) for a fixed N and JAI implies

that the resultant network types should have equal probabilities of occur-

rence. In general, the following two procedures should be able to satisfy

this requirement. The first method denoted by the "Deletion Method" starts

from the completely connected AN; i.e., the adjacency matrix filled with

ones, and deletes the necessary number of arcs until JAi arcs are left.

This is done by substituting zeroes for ones until !Ai ones are left in

the adjacency matrix. The second procedure, denoted by the "Addition Method",

starts with the unordered AN; i.e., the adjacency matrix filled with zeroes,

and generates the required number of arcs jAJ. This is done by substituting

IAI ones for zeroes in the adjacency matrix. In the following we discuss

the rationale of both methods.
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1 - Deletion Method: Let A =(a..) be the adjacency matrix corres-

ponding to a completely connected network. Figure A.2 gives an example

for N = 4 and JAI 5. Then let

n. = a.* N -i (outdegree) ,(A.1)

and for each j let

m. a~ . j - 1 (indegree)

1 2 3 4

1 0 1 1 1

2 0 1 1

3 0 1

4 0

Figure A.2

Completely Connected AN

The Deletion Method now reduces to the random deletion of

N(N;-l)/2 - Al

ones in the adjacency matrix, such that

n, > I for all i N and 0(A.2)

and 'M I for all j I and ml 0 (A.3)

For any AN, the above condi tions sirnplv tittc that at least one arc must

leaive every node except the Ia~st ,ind at least one irc should enter every

node except the first.



57

The Deletion Method should generate activity networks with equal

probabilities for the different feasible network types, i.e., all existing

ones in the adjacency matrix for the completely connected network should

receive equal deletion probabilities given the above-mentioned consistency

constraints. This can be achieved by numbering all the ones in the adjacency

matrix for the completely connected AN from left to right and consecutively

in the rows, as illustrated in Figure A.4.

Label Range Node

1 2 3 4 0
1

1 0 1(1) 1(2) 1(3) 1/6
2

2 0 1 1(5) 2/6 i=1
3

3 0 1(6) 3/6
4

4 0 4/6
5 i= 2

5/6
6

6/6 i =3

Figure A.4

Label and Probability Assignment

The corresponding numbers are then assigned to equal intervals in the range

of a uniformly distributed variable. Then drawing a random number yields

an interval which, in turn, identifies the label of a corresponding arc.

The interval corresponding to a node i * has a length equal to (N-i*) tinICS the

interval length of a label. For example in Figure A.4 the interval corres-

ponding to node i* = 2 has a length of

(4-2)(1/6) 1/3.



58

It can also be seen from Figure A.4 that i* = 2 is preceded by 3 intervals,

each is of length 1/6; i.e., in general, node i* is preceded by at least

O<<*(N-i) = (i*-l)N - i*(i*-l)/2 (A.4)

labeled intervals.

In order to generate an i*, let Y - U(0,1) and let

X = Y-N(N-l)/2 (A.5)

where N(N-l)/2 denotes the total number of labels (total number of arcs in the

AN). Now the interval relation between X and i* implies that (see Eq. (A.4))

X > (i*-l)N - i*(i*-l)/2

or with a > 0 we have

i* 2- (N+l/2)i* + (N+X-a) =0

which yields

i= (N+1/2) ± (~/) (+-)(A.6)

Since i * N - I we must select the -"root. Moreover, since a 0,

Eq. (A.6) reduces to

- (N+1/2) - (/N+l/2) 2- 2N - 2x

or i*~~ (N+1/2) - -V(N-1/2) 2 2X

Substituting from Eq. (A.5) yields
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i* < (N+1/2) - /N(N-I) (l-Y) + 1/4

Also by a symmetrical argument that considers the nodes that are larger ,

than i*, we have

X < i*N - i*(i*+l)/2

we find

i* > (N-1/2) - /-N(N-1)(1-Y) + 1/4.

But Y U(O,1) implies that (l-Y) U(0,1); hence let = vN(N-I)Y + 1/4,

then

N - 1/2- B < i* < N + 1/2-

or

1* IN L+1/2 - 3-j .... (A.7)

Given this value of i, we draw a new random observation of Y - U(0,1)

and rescale into X - U(i+l, N+l) by setting

X = Y(N-i*) + i* + 1

which in turn yields

S+ Y (N-i) (A.8)

The corresponding arc (i*, J*) is deleted from the AN provided that con-

ditions A.2 and A.3 are satisfied. This procedure is repeated until

n, m. = A.
ii j
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2 - The Addition Method: The Deletion Method will delete N(N-l)/2 - !A

arcs. For certain values of N and JAI, this may be a time consuming process.

Suppose we have to generate a network with N = 4 and JAI = 5, then the dele-

tion method will have to delete 1 arc; however, if N = 100 and A = 150, then

4800 out of 4950 arcs need to be deleted.

Under such conditions, the Addition Method may prove to be less time-

consuming. As a consequence of the node labeling procedure adopted, there

should always be an arc connecting nodes 1 and 2 and an arc connecting nodes

N - 1 and N. Consequently, we believe the Deletion Method is to be preferred

if

JAI N(N-l)/4 + 1,

and we prefer the Addition Method if otherwise.

Consider now the previous example with n = 4 and JAI = 5. Figure A.5

represents the initial adjacency matrix and the corresponding network. It

can be observed from Figure A.5 that node 2 is not yet an emitting node and

1 2 3 4

1 0 1 0 0 (
2 0 0 0 i

3 0 .14

4 0

Figure A.5

Initial Network in the Addition Method

node 3 is not yet a receiving node, In general the initial network will be

characterized by n = N - 3 non-emitting nodes, and m - N - 3 non-receiving

nodes. This means that
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f = JAI -2-rm-n

of the remaining arcs may be inserted arbitrarily; in our example

f = 5 - 2 - I - I = I

arc of the three remaining may be generated completely arbitrarily (i.e.,

both of its terminal nodes are arbitrary), since at least an arc must

enter node 3, and one arc must leave node 2. Hence, the terminal of the

arc from node 2 and the origin of the arc to node N-i may be selected

arbitrarily. Consequently, the Addition Method will start from the initial

network and adjacency matrix (all a.. = 0 except a12 = 1 and a = 1).
1J 12.N-1,N

It uses formulas (A.7) and (A.8) to generate an arc as long as the residual

free arcs f is > 0 where

f = A - -m - n > 0

and initially, the number of generated arcs = 2, the non-emitting nodes

n = N - 3,and the number of non-receiving nodes m = N - 3. Each time an

arc is generated in this manner, the adjacency matrix is updated, the value

of t is set to

e = e+ 1,

and depending on the outcome either

m=m- 1

and/or

n =n-1.
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The Addition Method developed by Herroelen and Caestecke [5] is

represented by Flowchart 1. If e < A and f = 0 we check if m = 0. If

m 0 0, indicating that there is at least one non-receiving node, we locate

the column j* in the adjacency matrix that is completely filled with zeroes

(if ties develop, take the highest column index). We generate a correspond-

ing i* using

i* = l + (j* - I)Yj where Y U(0,1).

Update the adjacency matrix, and the values of Z, m, n and f then continue

until either P = A where the process stops, or Z < A and f = m = 0; in

such a case we check if n = 0. If n 0 0, then there is at least one non-

emitting node. We locate any zero row, i* < N - 1, in the adjacency matrix,

and generate a j* using the formula

j= L* + I + (N - i*)Yj where Y - U(O,1).

We continue until either 1 = A or n = 0, where in either case the process

stops.

Ideally as soon as m = 0 and n = 0 we should have = Al. However

the Addition Method presented in Flowchart 1 does not guarantee this result.

If JAJ < 2N - 4 then the Addition Method may fail to generate a feasible

AN, and if the feasibility conditions are imposed then the method may

generate more arcs than what is required. The following example illustrates

this defficiency:

Example: Let N = 10 and JA = 12 then Table I below summarizes the

steps taken by the Addition Method represented by Flowchart 1. It is

obvious that at step 10 we have t = JAI = 12 and according to Flowchart I

the process stops, even though there are nodes not connected from above,
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Start

Read

N and A

Set: K IAI, m = n = N - 3

6(a) = 0 for all a # 1, K

6(1) = 6(K) = 1 and 1 = 2

f K Z m - n

INo Stop

Is No Locate j* with IN(j*) = 0, Generate an arc (i*,j*) and

Generate i* < ] check for double selection
Is No Locate i* with OUT(i*) = l, jSet: t = e + I and

n =?and generate j* > i*= 1,

Update m, n and f

Flowchart 1

The Addition Method
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i.e., there are non-emitting nodes. If at step 10 we let the process to

go to 0 instead of Q in Flowchart 1, then the process will terminate

only after changing the, "go to 2" in the decision "Is n = 0?" to stop.

In such a case the process stops after n reaches zero, where the number

of generated arcs can exceed 12. In fact in this example the Addition

Method can generate up to 16 arcs. For the realization presented in

Table 1, P goes up to 15 arcs.

This deficiency is always possible for allIAIEs[N - 1, 2N - 5]. For

IAI> 2N - 4 the Addition Method as outlined in Flowchart I appears to be

working. In section II we modify the Addition Method to avoid this

deficiency.
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APPENDIX B

THE 2m METHOD

It was mentioned in Section III that the first method of discretizing

a continuous pdf is to use the first 2m moments of the continuous distri-

bution to solve the following system of nonlinear equations

m

Ixp(Xk = E(xn) = e for n = 0,1,2,...,2m-l (I)
k=l 

n

In a matrix form we have

VP = E.

The following two methods have been tried to solve this system of nonlinear

equations, but neither system succeeded in solving it for m > 8. These

methods are:

1 - Brown Method: which is documented in IMSL [6] library under the

name ZSYSTM. Starting with an initial solution ZSYSTM is supposed to con-

verge to a solution within E from a feasible solution. However, many runs

to different values of m and different initial solutions proved that ZSYSTM

was not converging, and often terminated because of a singularity that

occurred in the iterations, due mainly to the nature of Vendermonde matrix

V. Two other packages SBROWN and SNGINT developed by the Argonne National

Laboratory have been tried; neither succeeded in solving the above system.

This failure led to the search for other methods. The following method

was successful in solving the above system, but only for small value of

m (< 8).
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2 - Gaussian Quadrature [4]: To solve the above system of nonlinear

equations the procedure is as follows:

i) Determine the sample polynomial
m k

ir(x) = CkXk

k=O

The coefficients {ck} are determined uniquely using the follow-

ing system of linear equations after setting c = 1.m

c e +c'e +c+e +. c e +e = 0
0 0 1 1 2 2 m-lm-1 m

c e +ce+...+ c e em = 0
ol1 1 2 2 3 m-1m m +l

coe2 + cle + Ce +...+ c m-1e + e = 0

coeM_1 + clem + c2e m+ +...+ cm-1e2m-2 + e 2m1= 0

(ii) The set of realizations (discrete points) are determined by solving

the polynomial

m k
ckx =0

k=0

where all m solutions are simple and real (since 0 < u < x < v).

(iii) The corresponding probabilities are determined by substituting

for xk in the first m equations of (1) then solve uniquely for

P(Xk).

This algorithm was programmed and tested; it works for m : 8. It is

not recommended for discretization since it is very sensitive to the values

of E(x n), and requires the solution of two systems each of m linear equa-
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th
tions, and the solution of a polynomial of the m degree, each time it

is used to approximate a distribution. Furthermore, the user would never

know when the procedure will "blow-up".

IW
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APPENDIX C

THE INPUT FORMAT

The approximating procedure has been programmed and for the ease and

flexibility of its use, the program is in two parts: the first is used

when the AN is given and the second is used if the AN is to be generated.

This section describes the input requirements of each part.

1 - Input for an available AN: The input data is listed according to

the following order and format.

(a) Control Card: It is the first input card; it contains the

control parameters listed in the following order according

to the format (F5.3, 715);

SCAL,N,M,NRR,NCONT,MCS,NSIM,KEY

where

SCAL = A, the interval width (mesh) used in DISCRT.

N - Number of nodes

M = JAI, number of arcs

NRR = Number of desired ordered pairs in the approximated distribution.

10 if the AN has no arcs with continuous distribution
NCONT = ISl otherwise

= I0 if the Monte Carlo sampling 
is not desired

1 otherwise

NSIM - Number of samples if MCS = 1

KEY - Number of milestones (key nodes).

i ..... ... .... ... l[ ... ... . . . . il . Jil' . * . . . . . . . .. ... . . i ... . .. ii
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(b) List of the KEY nodes: These are listed in a non-decreasing

order according to the format (1615). They are integers de-

noted by the symbol KEYN.

(c) Identity of the Activities: This consists of four integer

values listed on one card, according to the format 415, for

each activity. These values are:

NS ,NE,NDSTT,NR

where

NS: starting node

NE: end node

NDSTT = 1,2,...,7, indicator of the activity pdf.

NR: number of ordered pairs of distribution if NDSTT = 7.

(d) Distribution Parameters: Those are read, in the order of the

arcs (which is the topological order of the AN). If

NDSTT(a) 0 7, i.e., the arc has a continuous distribution,

then the following four values listed according to the format

(4F10.4) are needed for each activity. These are:

EX,STDX,VMIN,VMAX

which are explained in Table 8 of Section VI.

If NDSTT(a) = 7 then NR(a) ordered pairs, {(R(k), p(R(k)))},

are listed according to the format (4(10.2, F1O.4)), hence

each card contains four ordered pairs.

NOTE: The (d) part of the input assumes each activity has its own distribu-

tion. The input routine can be changed to accommodate the assignment of a

given distribution to a set of activities.
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2 - Input if the AN is to be Generated: The input for this part is

limited to the following segments:

(a) Control Card: as in l(a) above.

(b) List of the KEY nodes: as in l(b) above.

(c) Activity-Distribution Assignment: This is a vector of length

NOI, where NOI is the number of intervals (partitions) of the

set A, where each partition has one p.d.f. Each entry in this

vector consists of

NULT,NDS,NT

where

NULT: number of the activity representing the upper limit

of the partition

NDS: 1,2,...,7, indicator of the pdf of the partition

NT: number of ordered pairs of the pdf if NDS = 7

This vector is listed according to the format (1615).

(Notice that the first entry at the beginning of the vector

is the value of NOI).

(d) Distribution Parameters: as in l(d) above.

At the end of both parts of the input data we add the information needed

for the digital plotter, the plotter is USPLT of the IMSL Library. It is

listed on three cards as follows:

I - First cardwhich has the format (4FI0.2, 1OAI, 415),contains the

following:

(a) RAN(I) for I = 1,2,3,4: Four values specifying the minimum and

maximum of the x and y axis respectively. If RAN(I) are set

equal to zero, then the program determines the x and y ranges.
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(b) PCH: Contains up to 10 plot characters, one for each

function. If not specified leave PCH(1) and PCH(2)

blank.

(c) IOP: A zero one input parameter indicating number of

printer columns available.

(d) INC: Displacement between values in x to be considered.

(e) IY: First dimension of the arry y.

(f) NF: Number of functions to be plotted.

2 - Second card contains 72 characters of title information.

3 - Third card contains 36 characters for each axis for its annotation.

......... ............ ... ... ... ... .. ... ... .| .. .| I 1| . .. ... .. .... ... ..... .I 111 11| I 1 .. ... . .. .... .. ..




